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The two-dimensional one-component plasma, i.e. the system of point-like
charged particles embedded in a homogeneous neutralizing background, is
studied on the surface of a cylinder of finite circumference, or equivalently
in a semiperiodic strip of finite width. The model has been solved exactly
by Choquard et al. at the free-fermion coupling Γ =2: in the thermodynamic
limit of an infinitely long strip, the particle density turns out to be a noncon-
stant periodic function in space and the system exhibits long-range order of
the Wigner-crystal type. The aim of this paper is to describe, qualitatively as
well as quantitatively, the crystalline state for a larger set of couplings Γ =2γ
(γ =1,2, . . . , a positive integer) when the plasma is mappable onto a one-
dimensional fermionic theory. The fermionic formalism, supplemented by some
periodicity assumptions, reveals that the density profile results from a hierarchy
of Gaussians with a uniform variance but with different amplitudes. The num-
ber and spatial positions of these Gaussians within an elementary cell depend
on the particular value of γ . Analytic results are supported by the exact solu-
tion at γ =1 (Γ =2) and by exact finite-size calculations at γ =2,3.

KEY WORDS: Two-dimensional jellium; semiperiodic boundary conditions;
translation symmetry breaking.

1. INTRODUCTION

According to the laws of electrostatics, the Coulomb potential v at a
spatial position r ∈Rν of the ν-dimensional Euclidean space, induced by
a unit charge at the origin 0, is defined as the solution of the Poisson
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equation

∆v(r)=− sνδ(r), (1.1)

where sν is the surface area of the unit sphere in Rν . The pair interaction
energy of particles with charges q and q ′, localized at the respective posi-
tions r and r′, is given by

v(r, q|r′, q ′)=qq ′v(|r − r′|). (1.2)

In one dimension (1D), s1 =2 and the solution of (1.1) reads

v(x)=−|x|, ν=1. (1.3)

In 2D, s2 =2π and the solution of (1.1), subject to the boundary condi-
tion ∇v(r)→0 as |r|→∞, reads

v(r)=− ln
( |r|
r0

)
, ν=2, (1.4)

where r0 is a free length constant which fixes the zero point of the poten-
tial. The Coulomb potential defined by Eq. (1.1) exhibits in the Fourier
k-space the characteristic singular |k|−2 form. This maintains many generic
properties, like the sum rules,(1) of “real” 3D Coulomb systems with the
interaction potential v(r)=1/|r|, r ∈R3.

The present paper deals with the equilibrium properties of the clas-
sical (i.e., nonquantum) one-component plasma, sometimes called jellium,
formulated in 1D or quasi-1D domains. The jellium model consists of
only one mobile pointlike particle species of charge q embedded in a fixed
background of charge −q and density n such that the system as a whole
is neutral.

Thermodynamics of the 1D jellium has been obtained exactly a long
time ago by Baxter.(2) It was proven subsequently that the 1D jellium is
never in a fluid state, but forms a Wigner crystal.(3,4) In particular, choos-
ing the free (hard walls) boundary conditions and going to the infinite vol-
ume limit, the one-particle density becomes periodic in space with period
1/n. This long-range order is present for all densities n and all tempera-
tures. Although the 1D jellium is not in a fluid state, it behaves as a con-
ductor in the sense that arbitrary boundary charges are perfectly screened
by means of a global transport of the particle lattice in the background,
with no additional polarization in the bulk.(5)
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Translation symmetry breaking was documented also on a quasi-1D
system, namely the 2D one-component plasma living on the surface of
a cylinder of circumference W .(6) This system is exactly solvable at the
dimensionless coupling constant Γ =2.(7) In the thermodynamic limit of
an infinitely long cylinder, the one-particle density is given by an array
of equidistant identical Gaussians along the cylinder’s axis, with period
1/(nW).

In 1D and quasi-1D Coulomb systems, the variance of the charge
in an interval I remains uniformly bounded as |I |→∞. The existence of
periodic structures is related to this boundedness of the charge fluctua-
tions.(8,9)

The present work proceeds in the study of the 2D jellium on the
cylinder surface.(6,7) Our aim is to describe, qualitatively as well as
quantitatively, the crystalline state for a larger set of couplings Γ =2γ
(γ =1,2, . . . , a positive integer). At these couplings, the underlying model
is shown to be mappable onto a 1D anticommuting-field theory follow-
ing the method of ref. 10, and its density profile is expressible in terms of
the corresponding field correlators. The assumption of the periodicity of
the particle density in the thermodynamic limit reveals uniquely that the
density profile results from a superposition of a hierarchy of nonidenti-
cal Gaussians with a uniform variance but with different amplitudes. The
number and spatial positions of these Gaussians within an elementary cell
depend on the particular value of γ . The analytic results for the crystal-
line state are supported by the exact solution at γ =1 (Γ =2) and by the
exact finite-size calculations at γ =2,3.

The paper is organized as follows. In Section 2, we present basic
formulas for the one-component plasma living on the cylinder surface.
Section 3 deals with the 1D fermionic representation of the model for
the special values of the coupling constant Γ =2γ (γ a positive integer).
Section 4 is devoted to a general analysis of the density profile in the ther-
modynamic limit; the Gaussian structure of the crystalline state is revealed
for any value of γ . The analytic results are verified in Section 5 on the
exact solution of the model at γ =1, and by the exact finite-size calcula-
tions at γ =2 and γ =3.

2. THE MODEL

First we define the 2D one-component plasma confined to the sur-
face of a cylinder of circumference W and finite length L, in the canonical
ensemble. The cylinder surface can be represented as a 2D semiperiodic
rectangle domain Λ with r = (x, y)∈Λ if −L/2 �x�L/2 (free or hard
walls boundary conditions at x=±L/2) and −W/2 �y�W/2 (periodic
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boundary conditions at y=±W/2). It is sometimes useful to use the com-
plex coordinates z=x + iy and z̄=x − iy. There are N mobile pointlike
particles of charge q in Λ, embedded in a homogeneous background of
charge density ρb=−qn with

n= N

LW
, (2.1)

so that the system as a whole is neutral. The interaction potential between
two unit charges at r1 and r2 is given by the 2D Poisson equation (1.1)
with the requirement of periodicity along the y-axis with period W . Writ-
ing the potential as a Fourier series in y, one gets(6)

v(r1, r2)=− ln

∣∣∣∣2 sinh
π(z1 − z2)

W

∣∣∣∣ . (2.2)

At small distances |r1 − r2|�W , this potential behaves like the 2D Cou-
lomb potential (1.4) with the constant r0 =W/(2π). At large distances
along the cylinder |x1 − x2|�W , this potential behaves like the 1D Cou-
lomb potential −(π/W)|x1 − x2|. We shall need to express the absolute
value on the r.h.s. of Eq. (2.2) formally as the product g(z1)g(z2)|f (z1)−
f (z2)|. This can be done in two ways:

∣∣∣∣2 sinh
π(z1 − z2)

W

∣∣∣∣ = e−(π/W)(x1+x2)|e(2π/W)z1 − e(2π/W)z2 | (2.3)

= e(π/W)(x1+x2)|e−(2π/W)z1 − e−(2π/W)z2 |. (2.4)

The final results cannot depend on the particular choice, and we shall
adopt the representation Eq. (2.3). For a given configuration {r1, . . . , rN }
of charges, the total energy of the particle-background system is given in
ref. 6

EN({r})=q2
∑
j<k

v(rj , rk)+πnq2
∑
j

x2
j +BN, (2.5)

where BN is the background–background interaction constant.
The partition function at inverse temperature β is defined by

ZN = 1
N !

∫
Λ

N∏
j=1

d2rj e−βEN({r}). (2.6)
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It depends on the dimensionless combination Γ =βq2 called the coupling.
The multiplication of ZN by a constant does not effect the particle dis-
tribution functions, so for notational convenience we omit the interac-
tion constant BN in Eq. (2.5) and multiply each volume element d2rj in
Eq. (2.6) by W−2, to get

ZN = 1
N !

∫
Λ

N∏
j=1

[d2zj w(zj , z̄j )]
∏
j<k

|e(2π/W)zj − e(2π/W)zk |Γ . (2.7)

Here, w is the one-body Boltzmann factor

w(z, z̄)≡w(x)= 1
W 2

exp
[
−πΓ nx2 − πΓ

W
(N −1)x

]
. (2.8)

The particle density at point r ∈Λ is defined as

n(r)=
〈

N∑
j=1

δ(r − rj )

〉
, (2.9)

where 〈· · · 〉 denotes the usual canonical average. It can be obtained in a
standard way as the functional derivative

n(z, z̄)=w(z, z̄) δ

δw(z, z̄)
lnZN. (2.10)

Due to the cylinder geometry of the system, the particle density depends
only on the x-coordinate, n(r)≡n(x), and exhibits the reflection symmetry
n(x)=n(−x) with respect to the origin x=0. The charge neutrality of the
system is equivalent to the condition

∫ L/2

−L/2
dx[n(x)−n]=0. (2.11)

Our task is to determine the particle density profile in the thermodynamic
limit N,L→∞ (the circumference W of the cylinder is finite), where the
background density n given by Eq. (2.1) stays constant. The exact 1D
solution of the jellium at any temperature(3) and the exact 2D solution
at the coupling Γ =2(7) indicate two characteristic features of this density
profile:
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• The thermodynamic limit of the density profile depends on which one
of the two subsequences, the particle number N = even and N =odd
integers, is chosen; we denote by n(e)(x) and n(o)(x) the correspond-
ing density profiles defined in −∞<x<∞. The plots of n(e,o)(x) are
expected to be periodic with a period λ,

n(e,o)(x±λ)=n(e,o)(x). (2.12)

The two density profiles are supposed to be the two realizations of the
same periodic function shifted to one another by a half period,

n(e)(x±λ/2)=n(o)(x). (2.13)

• The period λ is equal to 1/n in 1D, independently of the tempera-
ture. The exact 2D solution for the coupling Γ =2 gives λ=1/(nW).
In both cases the elementary cell with the size of the period in the
x-direction contains just one particle.3 This motivates us to suggest
that the period

λ= 1
nW

(2.14)

is present for an arbitrary coupling Γ .

These two working hypothesis will be incorporated into an analytic treat-
ment of the model, and subsequently justified numerically with a high pre-
cision by finite-size calculations.

3. FERMIONIC REPRESENTATION

At Γ =2γ (γ =1,2, . . . , a positive integer), the 2D jellium with the
interaction Boltzmann factor

∏
j<k |zj − zk|Γ is mappable onto a discrete

1D fermionic theory.(10) The mapping can be readily extended to the pres-
ent model. The partition function Eq. (2.7) is expressed as an integral
over two sets of Grassman variables {ξ (α)j ,ψ

(α)
j }, each with γ components

(α=1, . . . , γ ) defined on a discrete chain of N sites j =0,1, . . . ,N − 1
as follows:

3We are grateful to B. Jancovici for noticing to us this important fact.
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ZN =
∫

DψDξ eS(ξ,ψ), (3.1)

S(ξ,ψ) =
γ (N−1)∑
j, k=0

ΞjwjkΨk. (3.2)

Here DψDξ = ∏N−1
j=0 dψ(γ )j . . .dψ(1)j dξ (γ )j . . .dξ (1)j and the action S involves

pair interactions of “composite” variables

Ξj =
N−1∑

j1,... ,jγ =0
(j1+···+jγ =j)

ξ
(1)
j1
. . . ξ

(γ )

jγ
, Ψk =

N−1∑
k1,... ,kγ =0

(k1+···+kγ =k)

ψ
(1)
k1

· · ·ψ(γ )kγ
. (3.3)

The interaction strengths wjk [j, k=0,1, . . . , γ (N −1)] are given by

wjk =
∫
Λ

d2zw(z, z̄) exp
(

2π
W
jz

)
exp

(
2π
W
kz̄

)
. (3.4)

Using the notation 〈· · · 〉= ∫ DψDξeS · · · /ZN for averaging over the anti-
commuting variables, the particle density (2.10) is expressible in the ferm-
ionic form as follows

n(z, z̄)=w(z, z̄)
γ (N−1)∑
j, k=0

〈ΞjΨk〉 exp
(

2π
W
jz

)
exp

(
2π
W
kz̄

)
. (3.5)

The fermionic correlators {〈ΞjΨk〉} can be obtained from the partition
function Eq. (3.1) using relation Eq. (3.2) via the derivatives

〈ΞjΨk〉= ∂

∂wjk
lnZN. (3.6)

Inserting the one-body Boltzmann factor w of interest Eq. (2.8) into
Eq. (3.4), and using the orthogonality relation

∫ W/2

−W/2
dy exp

{
2π
W

i(j −k)y
}

=Wδjk (3.7)
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leads to the diagonalization of the interaction matrix

wjk =wjδjk,

wj = 1
W

∫ L/2

−L/2
dx exp

{
−2πγnx2 + 2π

W
[2j −γ (N −1)]x

}
. (3.8)

Notice that the diagonal interaction strengths {wj } possess the symmetry

wj =wγ(N−1)−j for all j =0,1, . . . , γ (N −1). (3.9)

With wjk of the form Eq. (3.8), the action Eq. (3.2) of the partition func-
tion (3.1) becomes “diagonalized”,

ZN =
∫

DψDξ exp


 γ (N−1)∑

j=0

ΞjwjΨj


, (3.10)

and the fermionic correlators {〈ΞjΨk〉} are given by

〈ΞjΨk〉= 〈ΞjΨj 〉δjk, 〈ΞjΨj 〉= ∂

∂wj
lnZN. (3.11)

The particle density Eq. (3.5) takes the form

n(x)= 1
W 2

γ (N−1)∑
j=0

〈ΞjΨj 〉 exp
{
−2πγnx2 + 2π

W
[2j −γ (N −1)]x

}
,

(3.12)

where −λN/2 �x�λN/2, λ being defined by Eqs. (2.1) and (2.14). The
symmetry Eq. (3.9) of the interaction strengths {wj } implies an analogous
symmetry for the fermionic correlators

〈ΞjΨj 〉= 〈Ξγ(N−1)−jΨγ (N−1)−j 〉 for all j =0,1, . . . , γ (N −1).

(3.13)

This relation ensures the mentioned reflection property of the particle den-
sity n(x)=n(−x).
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4. GENERAL ANALYSIS

The explicit formula Eq. (3.12) for the density profile contains the
unknown set of fermionic correlators {〈ΞjΨj 〉}. In this section, we present
an analytic treatment of the thermodynamic N,L→∞ limit of this for-
mula, supplemented by the periodicity assumptions Eq. (2.12) and (2.13)
for the density functions with the period λ defined by Eq. (2.14). It will be
shown that for any γ the periodicity assumptions determine uniquely the
general Gaussian structure of the density profile, without having at one’s
disposal the particular values of the fermionic correlators {〈ΞjΨj 〉}. The
treatment depends technically on whether γ is an even or odd integer.

4.1. γ = Even Integer

For γ even, we define the auxiliary integer M as follows

γ (N −1)=2M. (4.1)

Let us shift the j -index enumeration in Eq. (3.12) by M,

j =M+ l, l=−M,−M+1, . . . ,M. (4.2)

Now, rescaling appropriately the integration x-variable in Eq. (3.8), the
interaction strengths can be written as

wM+l = exp((2πl2/γµ))√
2γµ

1√
π

∫ √
(πγ /2µ)N

−
√
(πγ /2µ)N

dx exp


−

(
x−

√
2π
γµ

l

)2

.

(4.3)

Here, we have introduced the dimensionless parameter

µ=nW 2, (4.4)

which measures the number of particles in a square of side W ; the lim-
its µ→0 and µ→∞ correspond to the extreme 1D (at zero tempera-
ture) and 2D versions of the model, respectively. The symmetry Eq. (3.9)
is equivalent to

wM+l =wM−l for all l=−M, . . . ,M, (4.5)
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which can be verified directly from the explicit representation Eq. (4.3).
For l finite and in the limit N→∞

wM+l ∼ 1√
2γµ

exp

(
2πl2

γµ

)
. (4.6)

Under the index shift Eq. (4.2), the density profile Eq. (3.12) can be
expressed as

n(x)

n
=
√

2
γµ

M∑
l=−M

cl(M) exp

{
−2πγ

µ

(
x

λ
− l

γ

)2
}
, (4.7)

where we have introduced the coefficients

cl(M)=〈ΞM+lΨM+l〉
√
γ

2µ
exp

(
2πl2

γµ

)
. (4.8)

The symmetry of the fermionic correlators (3.13) is equivalent to 〈ΞM+l
ΨM+l〉= 〈ΞM−lΨM−l〉. The consequent relation

cl(M)= c−l (M) for all l=−M, . . . ,M (4.9)

ensures the reflection symmetry n(x)=n(−x). We see that, even for a
finite-size system, the particle density (4.7) results as a superposition of
Gaussians, localized equidistantly at positions x=λl/γ (l=−M, . . . ,M),
with the uniform variance σ 2 =λ2µ/(4πγ ) but with different position-
dependent amplitudes. The value-structure of these amplitudes simplifies
substantially in the thermodynamic limit discussed below.

All formal algebra made till now was rigorous. To describe the ther-
modynamic limit of the profile relation Eq. (4.7), we adopt the two
assumptions presented at the end of Section 2. In the limit M→∞, one
has to distinguish between the subsequences of M in Eq. (4.1) which cor-
respond to N = even and to N =odd particle numbers. Within each of the
even and odd M-subsequences, the coefficients {cl(M)} tend uniformly to
their asymptotic values denoted by {c(e)l } and {c(o)l }, respectively. Thence,

n(e,o)(x)

n
=
√

2
γµ

∑
l=0,±1,...

c
(e, o)
l exp

{
−2πγ

µ

(
x

λ
− l

γ

)2
}
. (4.10)
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The analogue of the symmetry relation Eq. (4.9) takes the form

c
(e,o)
l = c(e,o)−l for all l=0,±1, . . . (4.11)

The periodicity assumption Eq. (2.12) implies

c
(e,o)
l = c(e,o)l±γ for all l=0,±1, . . . (4.12)

The shift condition Eq. (2.13) between the “even” and “odd” states leads
to the relations

c
(e)
l = c(o)

l±(γ /2) for all l=0,±1, . . . (4.13)

Based on Eqs. (4.11)–(4.13) we conclude that there exist γ /2+1 indepen-
dent asymptotic amplitudes C0,C1, . . . ,C(γ /2) such that

c
(e)
l =Cl, c

(o)
l =C(γ/2)−l for l=0,1, . . . , (γ /2). (4.14)

All other coefficients can be generated from the basic set Eq. (4.14) by
using the symmetry relations Eq. (4.11) and (4.12). The values of the
asymptotic C-amplitudes depend on the dimensionless parameter µ of
Eq. (4.4). They are constrained by the neutrality condition Eq. (2.11),
written for x ranging over one period as follows:

∫ λ

0
dx

[
n(e,o)(x)

n
−1

]
=0. (4.15)

Simple algebra gives

C0 +2(C1 +· · ·+C(γ/2)−1)+C(γ/2)=γ. (4.16)

For instance, in the γ =2 case, there are two amplitudes C0 and C1
such that

c
(e)
l =

{
C0 for l even,

C1 for l odd,
(4.17)

c
(o)
l =

{
C1 for l even,

C0 for l odd.
(4.18)

The amplitudes are constrained by

C0(µ)+C1(µ)=2. (4.19)
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4.2. γ = Odd Integer

For γ odd, the fermionic formalism needs to be developed separately
for the thermodynamic-limit subsequence with N even and N odd.

When the particle number N is even, the product

γ (N −1)=2M+1 (4.20)

with some integer M. The shift of the j -index enumeration in Eq. (3.12)

j =M+ 1
2

+ l, l=−
(
M+ 1

2

)
,−M+ 1

2
, . . . ,M+ 1

2
, (4.21)

leads to the interaction strengths

wM+(1/2)+l = exp(2πl2/γµ)√
2γµ

1√
π

∫ √
(πγ /2µ)N

−
√
(πγ /2µ)N

dx

exp
{
−
(
x−

√
(2π/γµ)l

)2}
, (4.22)

and to the coefficients

cl(M)=〈ΞM+(1/2)+lΨM+(1/2)+l〉
√
γ

2µ
exp

(
2πl2

γµ

)
(4.23)

possessing the symmetry cl(M)= c−l (M). In the limit N→∞ (keeping N
even), one arrives at the density profile of the “even” state

n(e)(x)

n
=
√

2
γµ

∑
l=± 1

2 ,± 3
2 ,...

c
(e)
l exp

{
−2πγ

µ

(
x

λ
− l

γ

)2
}
. (4.24)

The asymptotic coefficients satisfy the symmetry relation

c
(e)
l = c(e)−l for all l=± 1

2 ,± 3
2 , . . . (4.25)

and the periodicity condition

c
(e)
l = c(e)l±γ for all l=± 1

2 ,± 3
2 , . . . (4.26)
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implied by Eqs. (2.12) and (2.14). As a consequence, there exist (γ +1)/2
independent amplitudes C 1

2
,C 3

2
, . . . ,C γ

2
such that

c
(e)
l =Cl for l= 1

2 ,
3
2 , . . . ,

γ
2 . (4.27)

All other coefficients can be generated from the basic set Eq. (4.27) with
the aid of the symmetry relations Eq. (4.25) and (4.26).

When the particle number N is odd, the product γ (N−1) is express-
ible similarly as in Eq. (4.1), so that we can proceed along the lines of Sec-
tion 4.1. The density profile of the “odd” state is again of the form (4.10)

n(o)(x)

n
=
√

2
γµ

∑
l=0,±1,...

c
(o)
l exp

{
−2πγ

µ

(
x

λ
− l

γ

)2
}
, (4.28)

where the asymptotic coefficients exhibit the symmetries c
(o)
l = c(o)−l and

c
(o)
l = c(o)l±γ for all l=0,±1, . . . . The shift condition Eq. (2.13), when

applied to the representations Eq. (4.24) and (4.28), gives c(e)l = c(o)
l±(γ /2). In

view of Eq. (4.27), the basic set of the odd coefficients is given by

c
(o)
l =C(γ/2)−l for l=0,1, . . . , γ−1

2 . (4.29)

The neutrality conditions of type Eq. (4.15) constraint the C-amplitudes
as follows:

2[C(1/2)(µ)+· · ·+C(γ/2)−1(µ)]+C(γ/2)(µ)=γ. (4.30)

For γ =1, one has the simple result

c
(e)
l = 1 for all l=± 1

2 ,± 3
2 , . . . , (4.31)

c
(o)
l = 1 for all l=0,±1, . . . (4.32)

For γ =3, the above scheme results in

c
(e)
l =



C 1

2
for l=± 1

2 +3k,

C 3
2

for l= 3
2 +3k,

(4.33)

c
(o)
l =

{
C 3

2
for l=3k,

C 1
2

for l=±1+3k,
(4.34)
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where k is an arbitrary integer. The µ-dependent amplitudes are con-
strained by

2C(1/2)(µ)+C(3/2)(µ)=3. (4.35)

5. FINITE-SIZE CALCULATIONS

In this section, we check the obtained analytic results by the exact
finite-N calculations. The crucial problem is to determine the dependence
of the partition function ZN(γ ), given as the integral over anticommut-
ing variables by Eq. (3.10), on the set of interaction strengths {wj }γ (N−1)

j=0 .
Having at one’s disposal this dependence, the consequent fermionic corre-
lators [generated by using Eq. (3.11)] determine the c-coefficients of inter-
est via relations Eq. (4.8) [(γ even, N arbitrary) or (γ odd, N odd)] and
Eq. (4.23) (γ odd, N even).

For γ =1, one has the simple result(11)

ZN(1) = w0w1 · · ·wN−1, (5.1)

〈ΞjΨj 〉 = 1
wj
, j =0,1, . . . ,N −1. (5.2)

In the thermodynamic N→∞ limit, after simple algebra both even Eqs.
(4.31) and odd (4.32) types of the c-coefficients are reproduced exactly.

For larger values of γ , the partition function is a more complicated
function of interaction strengths whose complexity increases with increas-
ing the particle number N . The methods for a systematic generation of
ZN(γ ), realized in practice through computer languages like Fortran, are
summarized and further developed in ref. 12. With the aid of these meth-
ods we were able to go up to N =12 particles for γ =2 and up to N =9
particles for γ =3.

5.1. Results for γ = 2

The finite-size results for γ =2 are summarized in Figs. 1–3. Their
discussion follows the analysis of Section 4.1. The asymptotic amplitudes
C0 and C1 are defined by relations Eqs. (4.17) and (4.18).

Taking the parameter µ=3, the density profiles for the subsequence
with the particle number N even and the one with N odd are plotted in
Fig. 1a and 1b, respectively. In the units of the period λ=1, hard walls are
localized at x=±N/2 where the boundary effects dominate. On the other
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Fig. 1. (a) Density profiles for N even: γ =2, µ=3 and (b) Density profiles for N odd:
γ =2, µ=3.
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Fig. 2. The dependence of the c-coefficients on 1/N : γ =2, µ=3.

hand, close to the center x=0, the particle density exhibits the character-
istic periodic behavior as from relatively small particle numbers. The den-
sity at x=0 has the minimum for N even and the maximum for N odd.
This means that the asymptotic amplitudes fulfill the inequality C0<C1.
The Gaussians with the smaller asymptotic amplitude C0 are localized at
the minimum points of the density profile, and so they modify the den-
sity plot given by the equidistant array of the Gaussians corresponding to
the larger asymptotic amplitude C1 (and localized at the maximum points
of the density profile) only marginally, without generating new extreme
points. We observe numerically this phenomenon for any value of µ.

Taking the same value of the parameter µ=3, the plots of the coeffi-
cients {c0, c1, c2, c3}, reflecting the amplitudes of the Gaussians close to
the center, versus 1/N are pictured in Fig. 2 where only the subsequence
with N odd is considered. As the particle number N increases, c0 → c2 and
c1 → c3 as is expected. As can be seen the convergence of the c-coefficients
to their asymptotic C0 and C1 values turns out to be fast.

The dependence of the asymptotic amplitudes C0 and C1, constrained
by C0 + C1 =2, on the parameter µ is shown in Fig. 3. The finite-size
errors in determining these amplitudes are deducible directly from the
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Fig. 3. The plots of the asymptotic C-amplitudes vs. µ: γ =2.

differences c0 − c2 and c1 − c3 at the largest N =12 particle number. The
error bars increase with increasing µ, they are however still so small that
we do not present them in the figure in order to keep the clarity of the
presentation. In the limit µ→0, which corresponds to the 1D jellium at
zero temperature, C0 =0 and C1 =2; there exists consequently only one set
of Gaussians (more precisely, the δ-function peaks), in agreement with the
exact 1D solution.(3) In the limit µ→∞, which corresponds to the bulk
2D jellium, both asymptotic amplitudes tend to unity as it should be.

5.2. Results for γ = 3

The finite-size results for γ =3 are summarized in Figs. 4–6. We do
not comment these figures since they provide similar information as the
previous ones for γ =2. We only recall that the asymptotic amplitudes
C1/2 and C3/2, constrained by 2C1/2 +C3/2 =3, are defined by Eqs. (4.33)
and (4.34).

One concludes that the finite-size calculations confirm with a high
accuracy the predicted Gaussian structure of the crystalline state. The



176 Šamaj et al.

Fig. 4. (a) Density profiles for N even: γ =3, µ=3 and (b) Density profiles for N odd:
γ =3, µ=3.
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Fig. 5. The dependence of the c-coefficients on 1/N : γ =3, µ=3.

Fig. 6. The plots of the asymptotic C-amplitudes vs. µ: γ =3.
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structure of the crystalline state for noninteger values of γ is an open
problem.
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